

GEORGETOWN UNIVERSITY

Why Can't Discourse Parsing Generalize? A Thorough Investigation of the Impact of Data Diversity

Yang Janet Liu and Amir Zeldes

Department of Linguistics, Georgetown University {yl879, amir.zeldes}@georgetown.edu

EACL 2023 @ Dubrovnik, Croatia

RST Parsing & Generalizability

- Discourse parsing is the task of identifying and classifying the coherence relations that hold between different parts of a text.
- Rhetorical Structure Theory (RST, Mann and Thompson 1989) is a functional theory of text organization that constructs hierarchical structures in text, which have numerous applications.
- This study is the first to fully evaluate cross-genre RST parsing generalizability on complete trees in datasets with the same EDU segmentation.
- Overall, we find that diverse training data leads to better generalization on unseen genres regardless of model architecture. RST parsing work should devote more attention to multi-genre corpora as benchmarks.

English RST Corpora

RST Discourse Treebank (RST-DT, Carlson et al. 2003)

GUM (Zeldes, 2017)

the standard English RST benchmark, with data from the 1989 Wall Street Journal (WSJ) section of the Penn Treebank (PTB, Marcus et al. 1993)

- a multi-genre corpus covering 12 written and spoken genres
- continuously growing, with new data added in each version
- for this paper: GUM v8

Original Parseval eval scores on binary trees with gold EDU segmentations, following the recommendation of Morey et al (2017), on the following levels:

- <u>Span</u>: whether subtrees span the right EDUs
- <u>N</u>uclearity: whether edges point the right way
- **R**elation: whether labels are correct

Experiments & Results & Findings

Exp2: Joint Training (RST-DT)

Exp1: Cross-Corpus Generalization (RST-DT & GUM)

hypothesis: since GUM contains many genres, models trained on it will degrade less when testing on RST-DT than in the opposite scenario

parser 1: Guz and Carenini (2020, BOTTOM-UP) parser 2: Liu et al. (2021, TOP-DOWN)

setup: train the parsers on the TRAIN partition of each dataset and report scores on the TEST set

train	test	S	N	R	train	test
RST-DT	RST-DT	76.5	65.9	54.8	RST-DT	RST-DT
	GUM	65.3 (-11.2)	49.5 (-16.4)	-		GUM
	GUM news	71.0 (-5.5)	57.5 (-8.4)	-		GUM ne
GUM	GUM	69.9	57.0	48.5	GUM	GUM
	RST-DT	72.7 (+2.8)	57.4 (+0.4)	-		RST-DT
	GUM news	71.6	58.5	49.5		GUM ne

Simple Concatenation (CONCAT)

Model Stacking 2)

- **FLAIR-LABEL**: train an LSTM using FLAIR (Akbik et al., 2019) to predict EDU dependency labels
- **SR-LABEL**: train a full shift-reduce parser on GUM, generate predictions for RST-DT in the GUM scheme, and collapse such labels into dependencies
- **SR-GRAPH**: featurize each EDU's predicted dependency attachment direction and EDU distance to the parent EDU

PLM Fine-tuning (**SR-FT**): fine-tune SpanBERT on full parsing of GUM 3)

R *architecture* Ν S Zhang et al. (2021)* 76.3 65.5 **55.6** TOP-DOWN Liu et al. (2021)♦ **76.5** 65.2 54.2 | TOP-DOWN Guz and Carenini (2020)[♦] **76.5 65.9** 54.8 BOTTOM-UP this namer (CONCAT) 750 648 541

Findings

Table 3: Cross-Corpus Results (5 run average) of the BOTTOM-UP Parser from Guz and Carenini (2020).

Table 4: Cross-Corpus Results (5 run average) of the TOP-DOWN Parser from Liu et al. (2021).

S

GUM news 67.9 (-8.6)

76.5

68.6

71.1 (+2.5)

GUM news 73.4

Ν

66.2 (-10.3) 50.8 (-14.4)

65.2

54.9

63.3

55.8 (-9.4)

55.9 (+1.0)

R

54.2

46.1

57.2

- both parsers show a very significant degradation when training on RST-DT to parse OOD data from GUM.
- by contrast, the GUM-trained model actually scores better on RST-DT than on GUM.
- 1. All scenarios except for SR-FT are virtually equivalent to training on RST-DT alone, suggesting that added features are more distracting than helpful.

2. Complex global structure and pragmatic inferences still cause errors not prevented by more genres with different vocabulary

Human (Morey et al., 2017)	78.7	66.8	57.1	_
this paper (SP ET)	763	66.2	55.5	
this paper (SR-GRAPH)	75.8	65.5	54.7	
this paper (SR-LABEL)♠	76.2	66.0	55.3	BOTTOM-UP
this paper (FLAIR-LABEL)♠	75.8	65.6	55.3	
inis paper (CONCAT)*	15.9	04.8	54.1	

Table 5: Joint Training Performance on RST-DT. * = original paper score. $\diamond = 5$ run avg.; $\blacklozenge = 3$ run avg.

Exp3: OOD Multi-Genre Degradation (GUM)

RQ: how badly a multi-genre trained model will degrade on unseen genres, when the annotation scheme remains identical?

- 1. to explore OOD degradation, we conducted 10 experiments, comparing the normal genre-balanced scenario (GUM-test) with testing on each genre when it is not in "train" (one-vs-all, OVA)
- 2. since data for the smaller 4 growing genres may be less reliable and non-comparable, we separately report scores for training on all 8 large genres (ALL-LARGE), tested on each of the four growing genres: *conversation*, *speech*, *textbook*, *vlog*

The *degradation* column shows that the parser suffers when a genre is removed from training across the board, except for *news* and the Span level of *reddit*, suggesting that collecting more news data may not be a priority.

(See section 3.3 for more discussion. We also conducted a thorough error analysis on the worst performing genre, how-to guides, and categorized errors in section 4.)

	G	UM te	st	ĺ	ova		de	ion			
non-growing	S	N	R	S	N	R	S	Ν	R		
academic	77.0	68.5	59.8	75.2	66.2	55.7	1.7	2.3	4.1		
bio	70.4	58.2	51.2	68.8	53.9	43.2	1.6	4.3	8.0		
fiction	66.3	53.1	43.7	64.5	50.1	42.1	1.8	3.0	1.7		
interview	73.3	59.0	50.9	73.0	56.7	49.7	0.3	2.2	1.2		
news	71.7	58.4	49.1	72.2	59.2	51.3	-0.5	-0.8	-2.2		
reddit	66.0	52.3	44.2	66.6	51.9	43.3	0.6	0.4	0.8		
voyage	78.3	62.1	51.8	77.4	59.7	49.3	0.9	2.4	2.4		
how-to	76.5	63.6	54.6	67.1	54.3	44.8	9.3	9.3	9.9		
0	G	UM te	st	AL	L-LAR	GE	degradation				
growing	S	N	R	S	N	R	S	Ν	R		
conversation	45.4	34.5	26.7	42.7	31.4	21.8	2.7	3.1	4.9		
speech	76.0	64.4	55.2	76.4	62.9	54.8	-0.4	1.5	0.4		
textbook	77.4	66.8	57.3	76.2	64.3	54.5	1.2	2.6	2.9		
vlog	64.8	49.0	42.8	63.3	49.0	40.4	1.5	0.0	2.5		

Table 6: Per Genre Scores for GUM test vs. the OVA or ALL-LARGE Experiments (3 run average).

Exp4: Genre Variety in a Fixed-Size Sample (GUM)

hypothesis: ideally, we want to compare scores on a fixed OOD test set for equal-sized training corpora, divided into fewer or more genres

Analysis & Discussion & Takeaways

Training on multiple genres, each with comparatively fewer documents, can lead to good performance with only minor degradation on the very narrow WSJ domain from RST-DT.

- If there are not enough recurring examples of infrequent phenomena, because data is so diverse, learning might fail due to sparseness
- If having too many small genres is harmful, we expect cohort 3 (C3) to perform worst; By contrast, if diversity is helpful, C3 should perform best.

ID	genres	docs	EDUs	ID	genres	docs	EDUs		C1			C2			С3		C3–C1			C3-C2			mean_C3_gain			
C1	academic	18	1 970	C3	academic	9	1 004	test	S	N	R	S	N	R	S	Ν	R	S	N	R	S	Ν	R	S	N	R
CI	bio	19	1,981	00	bio	9	930	conversation	34.8	23.4	13.9	40.3	27.9	18.0	37.	9 26.4	18.0	3.0	3.0	4.1	-2.5	-1.5	0.0	0.3	0.7	2.0
	news	23	1,760		news	10	635	reddit	60.3	45.3	36.0	63.5	46.9	37.6	61.	8 47.6	37.3	1.5	2.3	1.4	-1.7	0.7	-0.3	-0.1	1.5	0.6
÷	total	60	5,711	-				speech	72.5	58.2	46.9	72.6	59.3	47.7	71.	5 57.1	48.0	-0.9	-1.1	1.1	-1.0	-2.1	0.3	-0.9	-1.6	0.7
C2	fiction	15	1,941	-	fiction	8	1,027	textbook	73.6	59.0	48.9	70.9	55.0	45.6	74.	60.5	51.4	0.5	1.5	2.5	3.1	5.5	5.9	1.8	3.5	4.2
	interview	15	1,931		interview	8	1,199	vlog	57.8	41.3	35.0	58.8	44.5	35.3	57.	7 43.4	34.8	-0.1	2.1	-0.2	-1.1	-1.1	-0.5	-0.6	0.5	-0.3
	how-to	15	1,840		how-to	8	917	voyage	76.6	58.1	47.5	76.5	57.4	46.4	78.	59.1	50.2	1.5	1.0	2.7	1.6	1.7	3.8	1.5	1.4	3.3
°	total	15	5712	1	total	52	5 712	macro_avg	62.6	47.6	38.0	63.8	48.5	38.4	63.	5 49.0	40.0	0.9	1.5	1.9	-0.3	0.5	1.5	0.3	1.0	1.7
	ioiai	43	5,712		lutai	52	5,712	micro_avg	58.7	44.2	34.8	60.5	45.7	35.7	59.	8 45.9	36.9	1.1	1.7	2.1	-0.6	0.2	1.2	0.2	1.0	1.6
Tabl with	e 7: Comp Different	positic t Genr	on of 3 e Conte	Fixed ents.	d-Size Tra	ining	Cohorts	Table 8	8: Pei	form	ance	of 3 F	ixed-	Size 7	Frain	Coho	rts wit	h Dif	feren	t Gen	re Co	ntent	s (5 n	in ave	erage).

- Republic and Online. Association for Computational Linguistics.
- ir Zeldes. 2017. The GUM Corpus: Creating Multilayer Resources in the Classroom. Language Resources and Evaluation, 51(3): 581-61

- Adding a second dataset for joint training creates a "break-even" effect: the benefit of more data helps about as much as the disparate domains harm within-corpus performance.
- Errors are skewed by genre: 1) Evaluation is problematic in *fiction* and *interview*, 2) Explanation and Organization are surprisingly hard to predict in 3 genres each.
- For CDU detection, which can benefit summarization or long-form QA 4. systems, in the cross-corpus setting, an RST-DT trained model captures only a single GUM CDU correctly (acc=0.042 vs. 0.375 for a GUM-trained model); scores on RST-DT are much higher: acc=0.842 for SR-FT trained on RST-DT vs. 0.553 for a GUM-trained model.
 - More training genres with smaller portions each promotes OOD generalization, and development of more diverse multi-genre data should take priority over building up material in existing genres to promote generalizable parsing.